BIAS IN THE PETO ONE-STEP ESTIMATOR
FOR THE COMMON ODDS RATIO

By
Tosiya Sato*

Abstract

The one-step method in the estimation of the common odds ratio proposed by Peto was used to summarize the results from meta-analysis. For some unbalanced data, it was known to have severe upward (non-null) asymptotic bias. In this paper, the asymptotic expectation of the Peto one-step estimator is derived and its bias is evaluated numerically over 1152 parameter combinations.

Key Words and Phrases: asymptotic bias, meta-analysis, the Peto one-step estimator.

1. Introduction

The Peto one-step method is frequently used to estimate a summary odds ratio for meta-analysis of clinical trials (Yusuf et al., 1985; Mosteller and Chalmers, 1992; Petitti, 1994). It is based on a homogeneous fixed-effect model for the study specific odds ratios. The Peto one-step estimator is based on quantities that are required for the calculation of the Mantel-Haenszel test. It is also used for meta-analysis of observational studies (Greenland and Salvan, 1990) and for estimating hazard ratio in a clinical trial (Berry, Kitchin and Mock, 1991), because the logrank test is the same as the Mantel-Haenszel test (Rothman and Greenland, 1998, p. 294).

Since the Peto one-step estimator is asymptotically unbiased under the null hypothesis that the common odds ratio is unity, one may expect its bias toward the null. However, Greenland and Salvan (1990) reported its substantial upward bias through a few numerical examples when the marginal totals are badly balanced. Table 1 shows an example given in Greenland and Salvan (1990). The odds ratio from the example in Table 1 is 3.75. In contrast, the Peto one-step odds ratio is 8.37.

Table 1: Data from a hypothetical cohort study
(Study 3 in Table I, Greenland and Salvan, 1990)

<table>
<thead>
<tr>
<th></th>
<th>Event</th>
<th>No Event</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treated</td>
<td>3</td>
<td>18</td>
<td>21</td>
</tr>
<tr>
<td>Control</td>
<td>12</td>
<td>270</td>
<td>282</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
<td>288</td>
<td>303</td>
</tr>
</tbody>
</table>

* Department of Biostatistics, Kyoto University School of Public Health, Yoshida Konoe-cho, Sakyoku, Kyoto 606-8501, Japan. Tel +81-75-753-4475 shun@pbh.med.kyoto-u.ac.jp
In this paper, the asymptotic expectation of the Peto one-step estimator is given. A numerical evaluation of its large sample bias is performed systematically for 1152 parameter combinations. The conventional variance of the Peto one-step estimator is also not consistent under non-null odds ratios. The true asymptotic variance and its estimator are also given and it is compared to the conventional variance estimator.

2. Asymptotic Expectation and Variance of the Peto One-Step Estimator

Consider a set of studies indexed by k, $k = 1, \ldots, K$, and the data in study k are summarized in a 2×2 table as follows:

<table>
<thead>
<tr>
<th></th>
<th>Event</th>
<th>No Event</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treated</td>
<td>x_k</td>
<td>$n_k - x_k$</td>
<td>n_k</td>
</tr>
<tr>
<td>Control</td>
<td>y_k</td>
<td>$m_k - y_k$</td>
<td>m_k</td>
</tr>
<tr>
<td>Total</td>
<td>t_k</td>
<td>$N_k - t_k$</td>
<td>N_k</td>
</tr>
</tbody>
</table>

The Mantel-Haenszel test statistic for no association between treatment and event is given by

$$X_{MH}^2 = \frac{(X - E)^2}{V_0},$$

where

$$X = \sum_k x_k, \quad E = \sum_k \frac{n_k t_k}{N_k}, \quad V_0 = \sum_k \frac{n_k m_k t_k(N_k - t_k)}{N_k^2(N_k - 1)},$$

and it has an approximate chi-squared distribution with 1 degree of freedom under the null hypothesis of no association between treatment and event.

Based on the product of the extended hypergeometric distributions, the conditional maximum likelihood estimator for the common log odds ratio, β, is calculated by Fisher’s scoring method (McCullagh and Nelder, 1989, p. 42). The $i+1$ th iterated estimate of β is given by

$$\hat{\beta}_{i+1} = \hat{\beta}_i + \frac{X - \sum_k E(x_k|t_k, \hat{\beta}_i)}{\sum_k \text{var}(x_k|t_k, \hat{\beta}_i)},$$

where E and var are the exact expectation and variance of the extended hypergeometric distribution. When we start from the null value that $\beta^0 = 0$, we have a one-step improved estimator (Sato et al., 1998) as

$$\hat{\beta}_p = \hat{\beta}^1 = \frac{X - \sum_k E(x_k|t_k, \beta = 0)}{\sum_k \text{var}(x_k|t_k, \beta = 0)}.$$

This is the Peto one-step estimator. For the calculation of the confidence interval of the common log odds ratio, the null variance of the Peto one-step estimator, $1/V_0$, is conventionally used.

To obtain the asymptotic expectation of the Peto one-step estimator, we consider the fixed studies limiting model in which the number K of studies remains fixed but each $N_k \to \infty$ in such a way that n_k/N_k and N_k/N approach nonzero limits l_k and r_k, where $N = \sum_k N_k$. Suppose the number of events (x_k, y_k) are pairs of independent binomial observations with denominators (n_k, m_k) and event probabilities (p_{1k}, p_{0k}). Under the
fixed studies limiting model, the common log odds ratio will have the same asymptotic
distribution under both the extended hypergeometric and the two independent binomial
distributions. The asymptotic expectation of the Peto one-step estimator is given by
\[
\beta_p = \frac{E^A(X - E)}{E^A(V_0)} = \frac{\sum_k r_k l_k (1 - l_k)(p_{1k} - p_{0k})}{\sum_k r_k l_k (1 - l_k)(l_k p_{1k} + (1 - l_k)p_{0k})(l_k(1 - p_{1k}) + (1 - l_k)(1 - p_{0k}))},
\]
where \(E^A\) means the asymptotic expectation.

The conventional variance estimator, \(1/V_0\), is not consistent under the non-null
common log odds ratio. The true asymptotic variance of the Peto one-step estimator is
given by
\[
N\text{var}^A(\hat{\beta}_p) = \frac{N\text{var}^A(X - E)}{(E^A(V_0))^2} = \frac{\sum_k r_k l_k (1 - l_k)(1 - l_k)p_{1k}(1 - p_{1k}) + l_k p_{0k}(1 - p_{0k})}{(\sum_k r_k l_k (1 - l_k)(l_k p_{1k} + (1 - l_k)p_{0k})(l_k(1 - p_{1k}) + (1 - l_k)(1 - p_{0k}))^2},
\]
where \(\text{var}^A\) means the asymptotic variance. Hence a consistent estimator of the asymp-
totic variance of the Peto one-step estimator is obtained by
\[
V_p = \frac{\sum_k \frac{1}{N_k} \left[\frac{m_k^2 x_k (n_k - x_k)}{n_k - 1} + \frac{n_k^2 y_k (m_k - y_k)}{m_k - 1} \right]}{V_0^2},
\]

3. Numerical Evaluation

We performed a numerical evaluation for the asymptotic bias in the Peto one-step
estimator. Table 2 shows selected parameter values: true common log odds ratio, \(\beta\), was
ranged from -1.61 to 1.61 (0.2 to 5 in the odds ratio scale, 12 levels); number of studies,
\(K\), from 5 to 40 (4 levels); ratio of treated subjects to control subjects from 1:1 to 1:10
(4 levels); the maximum of proportion of event in control group, \(p_{0k}\), was fixed at 0.2,
the minimum \((p_{\min})\) was set to 0.01 to 0.1 (3 levels), and we examined equally spaced
proportions of event in the control group that \(p_{0k} = p_{\min} + (0.2 p_{\min})(k - 1)/(K - 1)\)
and exponentially spaced ones that \(p_{0k} = p_{\min} \exp[(\log 0.2 - \log p_{\min})(k - 1)/(K - 1)]\)
(2 levels). We evaluated total of 1152 parameter combinations.

<table>
<thead>
<tr>
<th>Table 2: Selected parameter values for the bias evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>true common log odds ration, (\beta)</td>
</tr>
<tr>
<td>number of studies, (K)</td>
</tr>
<tr>
<td>ratio of number treated to control</td>
</tr>
<tr>
<td>proportion of event in control group, (p_{0k})</td>
</tr>
</tbody>
</table>
An illustration of the magnitude of bias where $K = 20$ and $p_{0k} = 0.05 - 0.2$ (exponentially spaced) is shown in Fig. 1. When the ratio of treated subjects to control subjects was 1:1, the bias in the Peto one-step estimator was toward the null. When the
true log odds ratio was less than 0, its bias was also toward the null. However, when the treated-control ratio was greater than 1 and the true log odds ratio was greater than 0, the bias tended to be anti-conservative. In general, the upward bias tended to be severe with increase of $\beta (> 0)$ and treated-control ratio.

We also examined the variance correction factor which was the ratio of the true asymptotic variance of the Peto one-step estimator to the asymptotic expectation of its conventional variance. We used the same parameter combinations in Table 1. Fig. 2 shows an illustration of the results for the same conditions as in Fig. 1. When the treated-control ratio was 1:1, the conventional variance was virtually unbiased. However, with increase of treated-control ratio, the conventional variance was biased upward (correction factors were less than 1) when $\beta < 0$ and was biased downward (correction factors were greater than 1) when $\beta > 0$.

4. Discussion

As shown in Fig. 1, the bias in the Peto one-step estimator was small and toward the null when the treated-control ratio was 1:1. Since the bias in its conventional variance was also small (Fig. 2), one may use the Peto one-step estimator and associated confidence intervals when the treated-control ratio is 1:1 which is typical in the meta-analysis of clinical trials.

However, when the treated-control ratio is greater than 1:1 as in the meta-analysis of observational studies, the biases in the Peto one-step estimator and its conventional variance become severe, especially when the treatment has a large effect. In such a case, one can use the Mantel-Haenszel methods and their associated confidence intervals, instead of the Peto one-step method or the odds ratio as a measure of treatment effect (Greenland and Robins, 1985; Robins, Breslow, and Greenland, 1986; Sato 1989, 1990).

References

Received October 28, 2003
Revised April 8, 2004